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For n spins 1/2 coupled linearly to a boson field in a volume V,, the existence of 
the specific free energy is proved in the limit n--* 0% V, ~ oo with n/V, = const, 
The interaction is essentially of the mean field type, in as much as it is propor- 
tional to 1/xf-~; the coupling constants are allowed to be spin dependent. A 
variational expression is obtained for the limiting specific free energy, and a 
critical temperature is identified above which the system behaves as if there were 
no coupling at all. 

KEY WORDS: Spins coupled to a boson field; thermodynamics of two-level 
atoms interacting with radiation; phase transition. 

1. I N T R O D U C T I O N  A N D  M A I N  R E S U L T  

C o n s i d e r  the  H a m i l t o n i a n  

H . =  ~ co.(v)a~*a~+V/'/2 ~ ~ {2.(j;v) a~*+)o.(j;v)a~} S<7 ) 
v~>l v~>l j = l  

+ ~ ~.(j)s~j) 
j = l  

for n spins  1 / 2 - - d e s c r i b e d  by the sp in  o p e r a t o r s  {S(~):j=I,  2 ..... n; 
= x, y, z }, w i th  [S(~.), S~k)] = ibjkS~j ) a n d  cycl ic  p e r m u t a t i o n s - - i n t e r a c t i n g  

l inear ly  wi th  a c o u n t a b l e  n u m b e r  o f  b o s o n i c  degrees  of  f r e e d o m  desc r ibed  

by c r e a t i o n / a n n i h i l a t i o n  o p e r a t o r s  {a* ,  av: v ~> 1 }, w i th  lay, av*] c 5v,v,. 
T h e  strictly positive b o s o n i c  f r equenc ies  co,(v) a re  a s s u m e d  to satisfy 

e-~O'(~) < ~ for f l>O 
v~>l 
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the coupling constants {2,(j; v): v ~> 1, j =  1, 2 ..... n} are complex numbers 
satisfying 

IA,,(J; v)[ z < oo for every j =  1, 2 ..... n 
v~>l 

and the {~n(j) : j= 1, 2,..., n} are real. The Hamiltonian arises in a realistic 
model of atoms (or molecules) interacting with radiation if one accepts to 
treat the atoms in a two-level approximation and neglects terms that are 
quadratic in creation or annihilation operators. (9) 

The problem is to determine the specific free energy of the system in 
the thermodynamic limit n --* 0% where V,, the volume of the system, is 
proportional to n, that is, p =n/Vn, the density of the spins, is constant. 
This problem has been solved in a number of particular cases. Hepp and 
Lieb (8~ treated the case of one bosonic mode, using a rotating-wave 
approximation for the coupling (Dicke maser model). These same authors 
then (9) removed the latter approximation and treated finitely many bosonic 
modes in the homogeneous case, where the coupling constants and spin 
frequencies are independent of the spins: 2,(j; v) = 2n(v) and e,(j) = ~, for 
every j =  1, 2 ..... n. Hepp and Lieb also obtained results on the ther- 
modynamic stability for the general (i.e., heterogeneous) model, leaving 
open the question of the existence of the thermodynamic limit. (9) Sub- 
sequently, the "approximating Hamiltonian method" has been used on the 
Hamiltonian Hn and its variants. (2'3'~z) The homogeneous case with coun- 
tably many bosonic modes has been treated in detail (1~ using large- 
deviation methods developed in ref. 4. 

Here, the problem is solved for the heterogeneous model using a 
method developed by Duffield and Pul6 in their treatment of the BCS 
model (6) supplemented with an idea of Bogoljubov and Plechko. (3) It is 
shown that under certain specified conditions H,  is thermodynamically 
equivalent (in the sense that the difference of the specific free energies 
vanishes in the thermodynamic limit) to the Hamiltonian 

~In = 20")n(Y) array -Jr ~ '~n(J) 9(5)- Wn 1 i An(j' k) S(xj)g(xk) 
v>~l j = l  j,k=l 

where the spin-boson interaction is replaced by an effective quadratic 
spin-spin interaction: 

A,,(j, k) = Re ~ co.(v)- 1 2.(j; v) 2.(k; v), j, k = 1, 2 ..... n 
v>~l 

Moreover, H .  is thermodynamically equivalent to the Hamiltonian 
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I2I.(x) = Z c~ a*av + ~ e.(j) S~j) 
v>~l  j = l  

+ ~ A.(j,k)xi{V.xkl-2S(-~)} 
j , k =  1 

if the real n-vector x is chosen so as to minimize the corresponding specific 
free energy. 

The result is then the following: 

T h e o r e m  1. Suppose there exist real-valued continuous functions e 
on [0, 1-1 and A on [-0, 1] x [0, 1] such that the following conditions hold: 

( e l )  lim sup I~n(J) - e(j/n)] = 0 
n ~ o ~  j ~  { 1,2,...,n } 

(C2) lim sup jAn(j, k) - A(j/n, k/n)[ = 0 
n ~  j , k  c { 1,2,...,n } 

If 

(C3) f ~  lim ( - f lV . ) - l log t rexp{ - f l  ~" con(v)a*a,,} 
On coC~st v/> i 

exist for some fl > 0 and if 

(C4) lim n -3/2 E COn( v)-l/2 ~ [2~(j;v)l=O 
n ~ o 3  v>~l  j = l  

then 

where 

lim (- f iVe)  - l  l og t r exp ( - f lHn)  
p = cons t  

= fO_p sup 
r, s E L ~ ( [ O , 1 ] )  

[ s l~<r~<l  

(fo {fl-lI(r(t))+�89 le(t)l [r(t)Z--s(t)2] 1/2} dt 

+�88 f] f] A(t,u)s(t)s(u)dtdu) 

I(x) = -�89 + x) log[�89 + x)] 

- �89 - -  x )  l o g [ � 8 9  - -  x ) ]  for 0~<x~< 1 

This is proved in Section 3, after introducing notation in Section 2. 
The solution of the variational problem, following Duffield and Pul6, (6) is 
presented and briefly discussed in Section 4. 
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2. NOTATION A N D  DEFIN IT IONS 

It will be convenient to use Fock-space notation. For each 
n = 1, 2, 3,..., let ~ be a bounded region in Na of volume (i.e., Lebesgue 
measure) V.. Let [~ be a positive, injective, self-adjoint operator on L2(d.)  
such that exp(-flt)~) is trace-class for fl > 0. It follows that [)~ has a boun- 
ded inverse. Write !;1. for the n-fold tensor product of C 2 and let S(j) be a 
copy of the spin operator of magnitude 1/2 acting on the j th  component of 
Rn ( j =  1, 2,..., n). Let ~ be the symmetric Fock space o v e r  LZ(~Cn) and 
consider the Hamiltonian 2 

On~-al'(Dn)-~ ~ {(Vn) -1/2 {a*(2n(j))+a(it.(j))} S(~.)+e.(j)S(~.)} (2 .1 )  
j=l 

acting on ~ .  | where {~.(j)} ~ ~, {)~.(j)} =L2(dn), a(.)is the familiar 
annihilation operator, and dF denotes the second-quantization map. The 
quadratures formula (5) 

w [ f ] *  dF(b) W[f]=dI ' (b)+a*(b f )+a(b f )+ (f,  b f ) . l  (2.2) 

valid for fEDom(b) ,  where W [ f ] = e x p { a * ( f ) - a ( f ) }  is the unitary 
Weyl operator, enables one to write 

H.= ~ {n-lU.(j) * dF(D.) U.(j)+e.(j)S(~.)-lp [[I)~-m2.(j)ll 2 1} (2.3) 
j=l 

where the unitaries U.(j), j = 1, 2 ..... n, are given by 

U.(j) "= W[�89 P(+.) + W[In(V.)-1/2Dy12.(j)]* P(j ) 
(2.4) 

where P~) is the spectral projection of S ~  to the eigenvalue _+ �89 Formula 
(2.3) can now be used to prove the self-adjointness of H n. 

Two free energy densities are associated with Hn: 

exp(-f lV~f~) = try. | ~,,[exp(-flH~)] (2.5) 

e x p ( - f l V ~ f  ~ = try, [ e x p [ -  fl d r ( b , ) ] ]  (2.6) 

Of interest is the limit n ~ ~ ,  such that V~ diverges but p=n/V,  
remains constant. 

The Hamiltonian (2.1) has the following symmetry. Let the self-adjoint, 
unitary operator L~ on ~ .  | 5tn be given by L.  = F ( -  1 )(1-I j= I n  2S(~)),~ " then 

z Tensor notat ion for operators is not used, i.e., S~j~ = 1 | S~jj, a ( . ) =  a(. ) |  1, etc. 
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LnS~j)L,=S~(j) and LnS(~.)L~= -S(~) for every j =  1, 2 ..... n, and 
L, dF(.) L, = dF(.), Lna(.) L, = -a(.). In particular, Ln commutes 
with H~. 

Consider the Hamiltonian H,(h), h ~ ~ ,  defined by 

H.(h) = Hn + ~, hjS(~ (2.7) 
j=l 

where the symmetry of H~ implemented by L~ is broken if the external field 
vector h is nonzero. The free energy density associated with H~(h) is 
written f~(h) and is a concave function of each of the n components of h. 
Expectation values with respect to the canonical state associated with 
H~(h) are denoted by ( , ) h -  

The n x n matrix A n is defined by its matrix elements 

An(j,k)-Re(2~(j),i)2~k,(k))L2(~o}, j, kE{1,2,...,n} (2.8) 

It is readily seen that An is positive semidefinite and the multiplicity of 
the eigenvalue 0 is equal to n minus the number of vectors in 
{An(j): j =  1, 2 ..... n} which are real-linearly independent. 

3. T H E  P R O O F S  

Introduce a bosonic Hamiltonian Hbn(x), x ~ ~n on ~ by 

H~(x) = dr (b , )  + v, ~ xj { 1/2 ~/2[a*(An(j)) + a(s 
j = l  

k = l  

(3.1) 

and two spin Hami l ton ians /~ (h )  and HSn(h; x), h, x s  Nn, on Rn by 

/ t~ (h )=  ~ [e , ( j )SZ( j )+h jS(~) -V~ 1 ~ An(j,k) S(xj)s(xk) ] (3.2) 
j = l  k = l  

j = l  k = l  

(3.3) 

Write ~7~(h) and f~(h; x) for the free energy densities associated with (3.2) 
and (3.3), respectively. Expectation values with respect to a canonical state 
will be written as angular brackets indexed by the corresponding 
Hamiltonian or distinctive parameters characterizing it. 
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k e m m a  1 : 

(-flV~)-' iogtr~ exp[--flHb(x)]-- o 

~s h" f,,( , x ) = x A . x - ( V . B )  -~ 

Raggio 

for every xeNn 

j = l  k = l  

ProoL An application of (2.2) shows that (3.1) is unitarily equivalent 
to dF(bn) for every xE ~ (see the proof of Lemma 2A). Up to the constant 
term V, xA,xl ,  the Hamiltonian (3.3) is the sum of n pairwise commuting 
operators 

~n(J) S" + h i -  2 A.(j, k) Xk 
k = l  

on C 2, each of which has 

as its eigenvalues. | 

L e m m a  2A: 

f s ( h ) -  inf ms �9 o s f .(h, x) <~f. + f .(h) -f~(h) 
x ~  n 

ProoL Equivalently, 

fo  + inf f~(h; x) -f~(h) >~ 0 (*) 

0 AS " X By the first part of Lemma 1, f~+f . (h ,  ) is the specific free energy 
associated with the Hamiltonian /-).(h; x) = H~(x) +/l~(h; x); by Bogol- 
jubov's inequality (see ref. 7 for a proof), 

o - s  . (**) f~ + f . (h ,  x ) -  f~(h)~> V~-I(H~(h; x ) -  Hn(h))~,,(h;~) 

Now by (3.1), (3.2), and (2.7), the right-hand side of (**) is given by 
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By (2.2), 

j = l  j = l  

Using the formula W [ f ] *  a(g) W[f] = a ( g ) +  <g,f> 1 and (2.8), one 
finds 

<a*(Z.(k)) + a(Z.(k)) >H~(~) 

j = l  

j =  i dF(Dn) 

= - Vln/2 L xj(<)vn(k), b21z,(j)> + <L~(k), b2q , ( j )> )  
j ~ l  

+ (a*(2.(k)) + a(~.(k)))dr(~. ) 

= -2V~/2 L A,(j, k) xj 
j = l  

Thus, the right-hand side of (**) is zero for every x e  R"; (*) follows by 
taking the infimum with respect to x. | 

Bogoljubov's inequality also gives an upper bound on f~ 
f,(h); this involves 

V; 3/2 ~ L ([Z,(J;v)a*+2,(J;v)a~]S(5)>h (3.4) 
v ~ > l j = l  

Bogoljubov and Plechko (3) have devised an alternative method which 
avoids the problem of estimating (3.4). Fix an arbitrary n, and consider an 
arbitrary finite number N of boson modes with strictly positive frequencies 
{~o,(v): 1 ~< v ~< N} and associated coupling constants {Z,(j; v): 1 <~ v ~< N, 

j =  t, 2,..., n}. The Hamiltonian Hn(h;N) is that obtained from H,(h) by 
considering only these N modes, and the associated specific free energy will 
be written f,(h; N); accordingly, write f~ and ~,(h; N). 

Let A={v:l<~v<~N, Z,(j;v)=O for every j = l ,  2 ..... n}, and 
= {1, 2,..., N}\A. For any set z = {rv: v e B} of real numbers in the open 

interval (0, 1), one has the identity 

H~(h;U)= ~ on(v)a*a~+ ~ ( 1 - z v ) o , ( v ) a * a ~ + H , ( h ,  ~~ "N;T) 
v~A v~B 

+ E T,%(v)b~(T)*b,(~) (3.5) 
vE~  
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where 

H.(h, N; r) = e.(J) S(j) + hiS(j) - V. 1 (3.6) 
j = l  k = l  

AN(j, k; z) = Re ~ [vvco.(v)] - '  2.(j; v) 2.(k; v) (3.7) 
v ~  

b~(r)=av+ Vyl/2[r~oo,,(v)] 1 ~, An(j; V) S(Xj) ( 3 , 8 )  
] = 1  

Let f~ r) be the specific free energy of 

co.(v ) a*av + ~ (1 - rv) co.(v) a*av 
v~,~ v ~  

and writey~.(h; N; r) for that of (3.6). Since the last term in (3.5) is positive, 
f~ ~)+ jT~.(h; N; r)<<.f.(h; N) by Bogoljubov's inequality. Thus, 

f~ + iTS(h; N ) -  f.(h; N) 

~< [ f ~ 1 7 6  z)] + [7~,(h; N ) -  jT~,(h; N; z)] (3.9) 

o N. Using Bogoljubov's inequality and the familiar formula for f . (  , z), one 
has 

0 0 . f . ( N ) - f . ( N ,  r) 

<~ V~ I ~ zvO3.(v)(a~*av)(U;~) 

= _ y~ z ~ ( ~ f ~  ~) 
VE 

= v :  ~ Y~ z v ~ . ( v ) ( e  ~ ~ . ( ~ _  1)-~ 
v~B 

<-(flV.) -~ Z rv(1-r~) -~ (3.10) 
V ~  

X 1 Also using Bogoljubov's inequality and - �89 ~< S ~ ~ 1, one finds 

)7](h; N)-)7~(h; N; z) 

< V z  2 E ~ ( ~ 7 1 - 1 ) ( O n ( v ) - '  
v E ~  2_ 

.(k, )(S(j)S(k))(h;N;.c) 
j,k= 1 

~< (2V.) -2 ~ (1 - - z ' v ) ' c ; l o )n (v )  -1 I)o.(j;v)[ (3.11) 
v~:~ j 1 
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Inserting (3.10) and (3.11) into (3.9), one obtains 

s h "  [f~ +27.( , N)] - f~(h;  N) 

< ( /~v.) - '  y~ ~ ( 1 - ~ )  -~ 
vEB 

+ (2II.) 2 ~ ( l_%)G-leo. (v)-~ 12.(j;v) t (3.12) 
v e B  j 1 

The infimum of the right-hand side of (3.12) with respect to r is assumed at 

/~l/2(.On(V ) 1/2 E j = I  ]2n(J; v)! 
(3.13) 

r~ = 2V~/2 + fll/2co=(v)_,/z E7=1 I2,(j; v)[ 

which lies in (0, 1) by virtue of the definition of 13. Thus, 

f~ + 37~(h; N ) -  f,,(h; N) 
N 

~" Vnl(j~Vn) -1/2 E (J)n(~)--l/2 i ]2.(j;v)[ (3 .14)  
v>~l j--i  

For fixed n, it follows that f~ N), and f,(h; N) converge t o f  ~ 
~(h) ,  and f,(h) respectively, as N ~  0% so that the following result is 
proved. 

kemma 2B: 

f o+  f ] ( h ) _ f . ( h ) <  ~ VZ~(flV.) 1/2 E ('0n(Y)--l/2 ~ [A,,(j;v)J 
v~>l j = l  

The limit off~,(h) has been recently obtained by Duffield and Pulh (6) in 
their analysis of the BCS model. Their result, which combines large- 
deviation methods with Berezin-Lieb bounds, is the following. 

T h e o r e m  2 (Duffield and Pulh). If conditions (C1) and (C2) are 
satisfied and there exists a real-valued continuous function h on [0, 1 ] such 
that 

(CO) lira sup ]hj - h(j/n)t = 0 
n~oo j e  { 1,2,...,n} 

then 
~7=(h)= lim f : (h)  

p = COllSt 

= p  i n f  ( I  1 { - f l  lI(r(t))+�89 
r, seL~([O.1]) \d 0 

Is[ <<.r<~ l 

- �89 [e(t)[ [r(t l2-  s(t)z] m} dt 

- l p  f2 f~ A(t , t ' )s( t)s( t ' )dtdt '  ) 
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Remark 1. The proofs of ref. 6 apply without change under the 
slightly stronger assumptions hj=h(j/n), e.(j)=e(j/n), and A.(j,k)= 
A(j/n, k/n), but can be adapted to accommodate (C0)-(C2). 

The in f~  % " ~. f.(h, x) is discussed in Appendix A; one has the following 
result: 

Lemma 3. Under the assumptions (C0)-(C2), 

lira inf f~.(h; x)=jTS(h) 
n ~  x ~ R  n 

p = const 

/ n 

M.  inf [ V ~ - I  ~ .  [_fl-ll(rj)_�89 2 2 1 / 2  1 = (r) - s)) +  hjsj] 
is] I~<r]~<~ \ j = t  

j = l  k = l  

Define L.  by replacing e.(j), hi, and A.(j, k) in the above expression for 
M. by e(•n), h(j/n), and A(/n,k/n), respectively, where g(.), h(.), and 
A(-, -) are the functions given by conditions (C0)-(C2). As in Theorem 3 of 
ref. 6, one proves that L.-+yS(h) as n-+ oo with p = const. Now, 

[M.-Lnp<~ sup Vy 1 ~ {�89 1/2 
Isji ~<ry~< 1 j =  1 

+�89 sj} 

+~V; ~ ~ ~ {[A(j/n,k/n)-a.(j ,k)]sjk} 
j = l  k = l  

<~ �89 -1 ~ { l[e(j/n)l - I~.(J)ll + Ihj- h(.#n)l } 
j=l 

+ Z Z IA(j/,. k / , ) -  A.(j. k)J 
j = l  k = l  

so that, by (C0)-(C2), M . -  L.  ~ 0 as n ~ ~ with p = const. | 

Remark 2. One can prove 

lim [j~s(h) - inff~(h; x) ]  = 0 

directly by the "approximating Hamiltonian method," using an idea of 
ref. 1; one has to assume that n - 1  (number of nonzero eigenvalues of 
A.) ~ 0 as n ~ ~ ;  moreover, the positivity of A. is used. (~) 

Proof. Let M . = i n f x ~  % �9 R,f.(h,x); by LemmaA1, setting s j=  
rj sin(3j), 
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The proof of Theorem 1 is obtained by combining Lemmas 2A, 2B, 
and 3 and Theorem 2. 

One can recover the results of ref. 10, which are valid for the 
homogeneous case: e , ( j )=en ,  2n(j; v)=2n(v), and h i=h ,  for all 
j =  1, 2,..., n. 3 Condition (CO) is trivially met; conditions (C1) and (C2) 
demand the existence of real numbers e and A (~>0) such that e n ~ e  and 
(2,,, t)212,)L2(~.1 ~ A. 

k e m m a  4. In the homogeneous case 

sTS(h)=-p sup [ f l -~I (u)+ �89189188  
O<~z,u<~l 

Proof. By Theorem 2, choosing r ( t )= r and s ( t )= s a.e., one has 

-TS(h)/p >1 sup [fl - ~I(r) - �89 + �89 l el (r 2 - $2) 1/2 "Jff �88 2] 
Isl~<r~<l 

= sup [ f l - l I ( r ) + l [ h l r x  
O~x,r<~l  

+ �89 [el r(1 -- x2) 1/2 + ~pAr2x 2-1 

For r and s in L~([0 ,  1]) with [sl ~<r~< 1 (all integrals are over [0, 1]), 

f Jr(t) 2 - s ( t )2 ]  I/2 dt 

= f [ r ( t ) - s ( t ) 3  lie [ r ( t )+s ( t ) ]  1/2 dt 

< ~ { f [ r ( t ) - s ( t ) ] d t . f [ r ( t ) + s ( t ) ] d t }  ~/2 

= r(t) dt - s(t) dt 

by the Schwarz inequality; since I is concave, 

0 
I s l ~ r ~ l  

A 
q2)1/2\ 

= sup [B-~I ( r ) - � 89189188  | 
N <~r<<, l 

3 Condition (C4) is not needed for the results of ref. 10. 
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4. THE PHASE T R A N S I T I O N  

The var ia t ional  p rob lem determining fS(h), and thus f (h ) ,  is 

tf {fl-lI(r(t)) 
r , s e  L~~ 1 ] )  \ J o  

isl ~<r~< t 

+ �89 le(t)l Jr( t)  ~ -s(t)2] 1/2 

-�89 s(t)} dt+�88 f~ f~A(t , t ' )s( t )s( t ' )dtdt ' )  (4.1) 

Fo r  A(t, t ')~O (and h = c o n s t )  this p rob lem 4 is solved by Duffield and 
Pu16r mos t  of  their a rguments  apply  to the case of arbi t rary  A. 

Not ice  that  if h = 0  and (r, s) is a maximizer  for (4.1), then so is 
( r , - s ) .  The  function I is concave,  with derivative - a r c t a n h .  The  
r v a r i a t i o n  can be done as in ref. 6; for s E L f ( I - 0 ,  1])  with Is141, let 
r , :  [0, 1] ~ ~ be defined (a.e.) to be 1 where Isl = 1, and otherwise as the 
largest zero in the interval [Is(t)l ,  1] of the function 5 

x --, �89 I~(t)l x - I-x 2 -s(t)2] 1/2 arc tanh(x)  (4.2) 

Then, if N denotes the unit ball of  L ~ ( [ 0 ,  1]), one has 

J ( h )  = sup { ~ ( s ;  h)} (4.3) 

where 

"U(S; h) = {fl-lI(rs(t))+�89 I~(1)1 [rs(t)2-s(t)2] 1/2 

- lh ( t )  s(t)} dt+�88 A(t, t ')s(t)s(t ')dtdt'  (4.4) 

Fo r  h = 0, one has inversion symmetry ,  • ( s ;  0) = ~ ( - s ;  0). Let  K be the 
self-adjoint, integral ope ra to r  on L2( [0 ,  t ] )  defined by the kernel A; K is 
compact .  Consider  the cont inuous  function gp on [0, 1 ] given by 

~'(/3/2) t/2, if e(t) = 0 
ga( t )=~({tanh[- �89  le(t)l]}/le(t)[) ~/2 if e( t )~a0 

(4.5) 

4The kernel need not be positive; it defines a positive operator. A(t, t ' )>0 is used in the 
uniqueness results of ref. 6. 

5 Notice that ro(t)=tanh[lfl I~(t)l] a.e., that r s=rs, and that rs= Isl on the set where 
~(t)=0. 
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and let G~ be the (bounded, positive) operator on L~([0, 1]) of multi- 
plication by g~. Let U} = pGt~KGp, i.e., 

{ U}gJ}(t)= pg~(t)f2 g~(t')A(t, t') ~p(t')dt' (4.6) 

Define ~b~(s; t) (a.e.) by 

~ ( s ;  t ) =p{Ks} ( t ) - I  2fi-~ arctanh s(t) e(t) = 0  (4.7) 
18(t)l s(t)/[rs(t)2-s(t)2] V2 e(t) ~ 0  L 

and notice that ~b}(-s; .  ) = - ~ } ( s ; .  ). 
The solution of (4.1) for h = 0 is obtained from the following two 

results, which will be proved in Appendix B by adjusting the arguments of 
ref. 6: 

T h e o r e m  3. If I[U~I] ~< 1, then 

f2 J~ (0 )  = ~//~(0; O) = fl--1 log{2 cosh [�89 }dt 

T h e o r e m  4. If IlU~ll > 1, then there exists a nonzero s, ~ such 
that J ( 0 ) =  ~ ( s , ;  0 ) =  ~ ( - s , ;  0), where s ,  and - s ,  are solutions of the 
Euler Lagrange equation ~b~(s; . ) =  0. Moreover, 

J(o)  = ~ ( + s , ;  o) 

f2 =fl -~  log(2cosh{�89 +k~(t)z]~/2})dt 

] 1 tanh{�89 2 + k~(t) 2] 1/2 } 
4fo [e(t)2 + k~(t)2] '/2 k~(t)2 dt 

where k~ r 0 satisfies 

i tanh{�89 + k~(t,)2] 1/2} 
k#(t)=p f ~ A(t, t') [g(t,)Z+k#(t,)2],/2 k#(t')dt' 

Remark 3. Most likely, s ,  and - s ,  are the only nonzero solutions 
of the Euler-Lagrange equation if K is positive, but I am unable to prove 
this. 

The map fl--* FI U~]l is strictly increasing with lim,~ o 1} U~tl = 0, so that 
one can identify a possibly infinite critical reciprocal temperature tic such 
that if f l<flc,  then IIU~ll < l, and if fi>flc, then ItU~ll > 1. For /~</3~ ,  y s 
(and thus f )  is independent of the interaction: the system is thermo- 
dynamically equivalent to a noninteracting system of bosons and spins. 
Qualitatively, the results are identical to those of refs. 9 and 10. 
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As an illustration, in the homogeneous case, one has 

~�89 if e=O 
rlU~ll =pA (tanh(�89 lel)/l~l if e r  

and thus, as in ref. 10, 

3c 
I 2arctanh(lel/pA)/le[ if e r  

+oo if e r  

2/pA if e = 0 

Finally, one can proceed, as in ref. 6, to obtain the thermodynamic 
limit of the equilibrium expectation of the average spin polarization in 
x direction when h(t)= ~ (by symmetry, this limit is zero for ~ = 0), and 
then consider the limit ~ ~ 0. The result is qualitatively the same as that for 
the homogeneous case, (I~ namely: the limit is zero for/3 ~</3~ and not zero 
if/3 >/3~, with different sign depending on whether ~ ]" 0 or A $ 0. 

APPENDIX A. DISCUSSION O F i n f x ~ , , P ( h ; x )  

Lemma A1. Let I on [0, 1] be defined as in Theorem 1. Then, 

inf f~(h; x) 
x ~  n 

( 
= inf ~ V21 

r je  EO,1] ( 
Oje [0,2n] 

[ --fl-lI(rj) + �89 rj cos(0j) 
j = l  

k = l  

( 
inf ~ V21 

rj~ [0,1] ( 
~qjE~ [ --  1 /2~ ,1 /2~]  

~, [-fl-lI(rj)-�89 [e,(j)[ rjcos(0j) 
j = l  

+�89188 1 i A,(j,k)rksin(~gj)sin(O~)]} 
k = l  

Proof. One verifies that for a and b real, 

inf 
r E [0,13 

y 2 + z 2 =  1 

[-fl lI(r)+�89 +�89 

= _/3-1 log{2 cosh[�89 2 + b2) 1/2] } 



Free Energy of the Spin-Boson Model 579 

Thus, by Lemma 1, 

~:(h;x)=V21 inf ~ {-fl-'I(r:)+�89 
rjs [O,l] j =  1 
~+ 2 y j = l  

k = l  

The variation over x e ~n can be done explicitly (for this, it is convenient to 
diagonalize An); it follows that 

inf f~,(h; x) 
xE [~n 

: V; l inf ~ [--fl-'I(rj)+�89 , 
rje [O,1] j =  1 

4 
+ y j = l  

k = l  

which proves the first claim upon setting z i = c o s ( 0 j ,  3 j e [0 ,2 r t ] .  The 
second claim is obvious. | 

A P P E N D I X  B. S O L U T I O N  OF T H E  V A R I A T I O N A L  P R O B L E M  
F O L L O W I N G  D U F F I E L D  A N D  PULE (6) 

Write J for J ( 0 )  and V(s)  for <(s ;  0). 

Proof of Theorem 3. This is a minor adjustment of the 
corresponding result of ref. 6, to accommodate the fact that the present 
variation is over ~ and not its positive part. Let A be the support of e. For 
arbitrary s s ~ and 0 < p < 1, put F(p) = <(ps). Now, F is differentiable 
with derivative (integrals with unspecified domain are over [0, 1 ])  

F'(p) = �89 f f  A(t, t') s(t) s(t') dt dt' 

- �89 fA Ig(t)[ s(t) 2 [rp,(t) 2 -  p2s(t)2] 1/2 dt 

_ fl-1 fAc arctanh[p Is(t)] ] Is(t)[ dt 
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Using the inequalities 

Is(t)] arctanh[p Is(t)] ] >/ps(t) 2 

[r,(t)2 _ s(t)2] 1/2 ~< tanh[�89 ]e(t)] ] 

one obtains 

Raggio 

a.e. It follows that 

Choose m such that 

~ I l U f i -  1(>0!) as n --. oc 

and let ~ = ~m ga- The proof then proceeds as in Lemma 3 of ref. 6. I 

I .omma B3. I f s ~ a n d J = ~ ( s ) , t h e n  { t ~ [ 0 , 1 ] : l s ( t ) l = l }  has 
zero measure. 

Proof. Proceed as in the proof of Lemma 2 of ref. 6, with the set 
{te [0, 1]: Is(t)l = 1}. I 

I . emma B4. If s �9 M and J = V(s), then OS~(s; .) = 0. 

Proof. This is an adaptation of the proof of Theorem 6 of ref. 6. Let 
0 < 6 < 1 ,  and take ~ e L ~ ( [ 0 ,  1]) with essential support contained in 

F'(p) ~ �89 { U ~ -  1 } S>L2([O, 1]) 

where ~(t)= s(t)/g~(t). The assumption LI U~][ ~< 1 implies F'(p)<. O, so that 
YF(ps) ~ ~//'(0), and by continuity V(s)~< ~U(0). One can compute ~/~(0) 
using ro(t ) = tanh[�89 [e(t)[]. | 

The proof of Theorem 4 is broken up into a series of lemmas all of 
which have their origins in ref. 6. 

Lemma B1. There exists s e n  such that J(h)=~U(s;h). 

ProoL See Theorem 5 of ref. 6. | 

L e m m a  B2. If II U~ll > 1, then J > U(0). 

Proof. Let s e M  with # ( s ) = J .  Since U~ is compact, IIU~ll is an 
eigenvalue; let r be a corresponding eigenvector. Define ~n e L~([0 ,  1]) by 

~'(t) = {~ (t) if Ir otherwise 
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A ~ =  { re  [0, 1]: Is(t)l ( 1 - 6 } .  Fo r  IPl sufficiently small, s p = s ( 1  + p ~ ) l i e s  
in ~ .  Let F( t )  = U(sp) .  Taking the derivative at p = 0, one obtains 

~(t)  s( t )  OS~(s; t) dt = 0 
8 

(*) 

N o w  take ~_ = sqS~(s;. ) on A~ and ~ = 0 on A,~; (*) implies that sq~(s;. ) =  0 
on A~. Since 6 was arbitrary, Lemma B3 implies that  s q ~ ( s ; . ) =  0. Thus, 
~b~(s; �9 ) = 0 on B, the essential support  of s; but  by the definition of q~(s; �9 ), 

~ ( s ; . )  = 0 on ~c. I 

The first part  of  Theorem 4 follows from Lemmas  B2-B4;  the rest of 
the claim follows as in ref. 6. 
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