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The Free Energy of the Spin-Boson Model
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For n spins 1/2 coupled linearly to a boson field in a volume V,, the existence of
the specific free energy is proved in the limit n - oo, ¥, — oo with n/V, =const.
The interaction is essentially of the mean field type, in as much as it is propor-
tional to 1/\/7,, ; the coupling constants are allowed to be spin dependent. A
variational expression is obtained for the limiting specific free energy, and a
critical temperature is identified above which the system behaves as if there were
no coupling at all.

KEY WORDS: Spins coupled to a boson field; thermodynamics of two-level
atoms interacting with radiation; phase transition.

1. INTRODUCTION AND MAIN RESULT

Consider the Hamiltonian

H,=) ow,v)aka,+V 7Y Z{A(], Ya* + 71,0 v) a,} S,
vzl vzl j=1
+ ) &) St
i=1

for n spins 1/2—described by the spin operators {S7,:j=1,2,.
a=x, y,z}, with [8,), St ] =16, 57, and cyclic permutatlons—mteractlng
linearly with a countable number of bosonic degrees of freedom described
by creation/annihilation operators {a}, a,:v>=1}, with [a,,a}]cé,,.
The strictly positive bosonic frequencies w,(v) are assumed to satisfy

Y e PM<on  for >0

vzl
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566 Raggio

the coupling constants {4,(j;v):v=1, j=1,2,.,n} are complex numbers
satisfying

Y 1A V)P < o0 forevery j=1,2,.,n

vzl

and the {¢,(j): j=1,2,.., n} are real. The Hamiltonian arises in a realistic
model of atoms (or molecules) interacting with radiation if one accepts to
treat the atoms in a two-level approximation and neglects terms that are
quadratic in creation or annihilation operators.®’

The problem is to determine the specific free energy of the system in
the thermodynamic limit »n — co, where V,, the volume of the system, is
proportional to n, that is, p =n/V,, the density of the spins, is constant.
This problem has been solved in a number of particular cases. Hepp and
Lieb® treated the case of one bosonic mode, using a rotating-wave
approximation for the coupling (Dicke maser model). These same authors
then® removed the latter approximation and treated finitely many bosonic
modes in the homogeneous case, where the coupling constants and spin
frequencies are independent of the spins: 4,(j; v)=4,(v) and &,(j) =¢, for
every j=1,2,.,n Hepp and Lieb also obtained results on the ther-
modynamic stability for the general (ie., heterogeneous) model, leaving
open the question of the existence of the thermodynamic limit.®) Sub-
sequently, the “approximating Hamiltonian method” has been used on the
Hamiltonian H, and its variants.**!?) The homogeneous case with coun-
tably many bosonic modes has been treated in detail’® using large-
deviation methods developed in ref. 4.

Here, the problem is solved for the heterogeneous model using a
method developed by Duffield and Pulé in their treatment of the BCS
model® supplemented with an idea of Bogoljubov and Plechko.® It is
shown that under certain specified conditions H, is thermodynamically
equivalent (in the sense that the difference of the specific free energies
vanishes in the thermodynamic limit) to the Hamiltonian

n

Hn= Z Cl)n(V) a\)fkav"" Z sn(j) S:j)—' V;l Z An(js k) S?j)S?k)

ve1 =1 Jk=1

where the spin-boson interaction is replaced by an effective quadratic
spin—spin interaction:

A k)=Re 3, @,(V)7 (V) Ak v), G k=12..n

vzl

Moreover, A, is thermodynamically equivalent to the Hamiltonian
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A, (x)= Y, o,v)ara,+ Z £,{J) S

(j)
vzl i=

+ Y Ak x{V,x 1 - 250,
Jk=1
if the real n-vector x i1s chosen so as to minimize the corresponding specific
free energy.
The result is then the following:

Theorem 1. Suppose there exist real-valued continuous functions ¢

on [0,1] and 4 on [0, 1] x [0, 1] such that the following conditions hold
(C1) lim  sup

n=> X e {1,2,..n}

le, (/) —e(j/n)| =0

(C2) lim sup  |A4,(j, k)

B2 ke {l1.2,.,n1)}

— A(j/n, kjn)| =
If

p = const

(C3)  f°= lim (—BV,) 'logtr exp{—ﬁ Y w,,(v)a:"a‘}
n— o ve 1
exist for some f>0 and if

(C4) im =% Y w,(v)~"? i

) =0
n— o0 V>1
then
lim (—pV,) 'logtrexp(—pH,)
pn=_goor?st
1
== sup ([0 + 3 1el0)] D0 - 5071
rse Lg([0,1]) \*0
Isl<r<t
I st
+%pj f At u)s(t)s(u)dtdu)
0 Y0
where

I(x)= —5(1 +x)log[+(1 + x)]

1
-3
—4(1 —x)log[4(1 —x)] for 0<x<1

This is proved in Section 3, after introducing notation in Section 2

The solution of the variational problem, following Duffield and Pulg,® is
presented and briefly discussed in Section 4.
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2. NOTATION AND DEFINITIONS

It will be convenient to use Fock-space notation. For each
n=1,2,3,., let ., be a bounded region in R of volume (i.e., Lebesgue
measure) V,. Let b, be a positive, injective, self-adjoint operator on L*(.2Z,)
such that exp(—fh,,) is trace-class for f > 0. It follows that b, has a boun-
ded inverse. Write &, for the n-fold tensor product of C* and let S, be a
copy of the spin operator of magnitude 1/2 acting on the jth component of
], (j=1,2,.,n). Let &, be the symmetric Fock space over L*(s,) and
consider the Hamiltonian?

H,=dI'(,)+ Z {(V,) ™2 {a*(A,())) + a(4,())) }S(j)+6 () S(j)} (2.1)

acting on §,® K, where {¢,(/)} =R, {4,(j)} = L*(<,), a(-) is the familiar
annihilation operator, and dI” denotes the second-quantization map. The
quadratures formula‘®

WL/ 1*dl(b) WLfT1=dl'(h) +a*(bf) +a(bf)+ <A bf>-1  (22)

valid for feDom(h), where W[f]=exp{a*(f)—a(f)} is the unitary
Weyl operator, enables one to write

i n=U,()* dl(h,) U,(j) +ea()) S5y —dp b 2LDIF 1} (23)

where the unitaries U,(f), j=1, 2,.., n, are given by

UnJ) 1= WDn(V,) "2 b7 2,()] Py + WHn(V,) =2, 12,()1* Py,
(24)

where P, is the spectral projection of S7, to the eigenvalue +3. Formula
(2.3) can now be used to prove the self-adjointness of H,,.
Two free energy densities are associated with H,,:

exp(— BV, [,) =g, o 1, Lexp(—=fH,)] (2.5)
exp(— BV, f7) = trg, [exp[ — B dI'(h,)]] (2.6)

Of interest is the limit »— oo, such that V, diverges but p=n/V,
remains constant.

The Hamiltonian (2.1) has the following symmetry. Let the self-adjoint,
unitary operator L, on §,® &, be given by L,=I'(—1)(IT7_, 257,); then

Jj=1

2 Tensor notation for operators is not used, i.e., S, =1® S,), a(-)=a(-)® 1, etc.
P ) @)
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L,S{,L,=S8{;, and L S{j)L —-S7, for every j=1,2,.,n and
L. dr¢-)L,=dI(-), L,a(-)L,= —a(-). In particular, L, commutes
With H,.
Consider the Hamiltonian H,(4), A€ R", defined by
H(h)=H,+ Y h:S5, 2.7)
j=1

where the symmetry of H, implemented by L, is broken if the external field
vector h is nonzero. The free energy density associated with H,(h) is
written f,(h) and is a concave function of each of the n components of A.
Expectation values with respect to the canonical state associated with
H,(h) are denoted by {-),.

The n x n matrix A4, is defined by its matrix elements

An(js k) = Re</ln(.])7 bnvlin(k)>Lz(.M,,)9 ja ke {19 2,"'9 n} (28)

It is readily seen that A, is positive semidefinite and the multiplicity of
the eigenvalue 0 is equal to » minus the number of vectors in
{2.(j):j=1,2,.., n} which are real-linearly independent.

3. THE PROOFS

Introduce a bosonic Hamiltonian H%(x), xe R”, on &, by

H(x)=dI'(h,)+V, Z {V V2[a*(Au()) + a(2,(/))]

j=

+ Z An(j,k)xkl} (3.1)

and two spin Hamiltonians A%(#) and ﬁf,(h; x), h, xeR", on ], by

ﬁ:(h)=i[nm St 4 S5 — i A,k s(,)ssz,] (32)

j=1

He(h; x)= Z {n(j) Sty + [j—Z Y A,,(j,k)xk] S;‘j)}—k V,xA,x1

k=1

(3.3)

Write £3(h) and f5(h; x) for the free energy densities associated with (3.2)
and (3.3), respectively. Expectation values with respect to a canonical state
will be written as angular brackets indexed by the corresponding
Hamiltonian or distinctive parameters characterizing it.
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Lemma 1:
(—BV,) 'logtrg exp[—BHYx)]=1" forevery xeR”
Falhy x) =xA,x— (V)

x i log [2 cosh (%ﬁ {Sn(j)z + [hj— 2 i A,(J, k) xk]z}m)]

j=1 k=1

Proof. An application of (2.2) shows that (3.1) is unitarily equivalent
to dI'(h,) for every x € R” (see the proof of Lemma 2A). Up to the constant
term V,xA,x1, the Hamiltonian (3.3) is the sum of n pairwise commuting
operators

6.(j) 5° + (hj— 23 A,0,k) xk) s*
k=

1
on C? each of which has
n 27)1/2
i%[sn(j)2+(h,~2 S 4,0, k) xk> ]
k=1
as its eigenvalues. |

Lemma 2A:
5= inf fi(hs x) < f3+ Fr(h) = k)
Proof. Equivalently,
79+ inf fs(h;x)— f,(h) =0 (*)
xeR"

By the first part of Lemma 1, f g+ F5(h; x) is the specific free energy
associated with the Hamiltonian H,(h; x)= H%(x)+ H:(h; x); by Bogol-
jubov’s inequality (see ref. 7 for a proof),

SO+ Folh; x)— fulh) 2 Vi Y H (B XY — Ho(h)D ) (**)
Now by (3.1), (3.2), and (2.7), the right-hand side of (*¥*) is given by

5 {[ Vot () ) iy 42 S Ay B) xk]

Jj=1 =

X [xj'— V;1<Sfcj)>f}'f,(h;x)}}
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By (22)
HY(x) = W[— Ve s ij;unm] ar,) W[V}/z » x,-b,:u,,u)]

Using the formula W[ f1*a(g) W[f]=a{g)+ (g f> | and (2.8), one
finds

Ca*(Ay(k)) +a(2,(k)) ) ey

- <W[V:/2 p ij;%n(j)}

=1

« [a* (L (k) + a(A(K))] W[—V:/z 5 x,-b;un<j>]>d .
j=1 (b

= =V Y x{(alk), b A )) + (Aa(R) B 4400))

j=1

+ {a*(Au(k)) + a(4,(K)) ) arcy)

= =2V,2 Y A,0,k) x;
i=1
Thus, the right-hand side of (**) is zero for every x e R"; (*) follows by
taking the infimum with respect to x. |

Bogoljubov’s inequality also gives an upper bound on fO+ F5(h)—
[f(h); this involves

Vo2 3 Y AL vy aX + 2,07 v) a1 S50 (34)
ve1j=1

Bogoljubov and Plechko'® have devised an alternative method which
avoids the problem of estimating (3.4). Fix an arbitrary #, and consider an
arbitrary finite number N of boson modes with strictly positive frequencies
{w,(v): 1<v< N} and associated coupling constants {4,(j;v): 1 <v<N,
Jj=1,2,..,n}. The Hamiltonian H,(h; N) is that obtained from H, (k) by
considering only these N modes, and the associated specific free energy will
be written £,(h; N); accordingly, write f%(N), and 75(k; N).

Let A={v1<v<N, A,(j;v)=0 for every j=1,2,.,n}, and
B={1,2,.., N\\A. For any set = {r,: ve B} of real numbers in the open
interval (0, 1), one has the identity

H (i N)= Y o) ata+ Y (1-1,) 0,()ara,+ Hsk N; 1)

ve A veB

+ Y, 1,0,(v) by(1)*b,(7) (3.5)

ve®
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where
Hs(h N;1)= Z [ (J) SE,)+hy Sth— Z N, k; r)Smek)} (3.6)
AY(j k;ty=Re Y [1,0,00)17 " 1,(j; ) A,(k; v) (3.7)
ve B
b(t)=a,+ V" [t,0,0)]1" Y A5 v) Sy, (3.8)

j=1
Let fO(N; t) be the specific free energy of
Y w,(v)afa,+ Y (1-1,)w,(v)aka,

veA veB )
and write 7 (4; N; t) for that of (3.6). Since the last term in (3.5) is positive,
SFOUN; )+ Fo(h; N; ©) < f,(h; N) by Bogoljubov’s inequality. Thus,
SUNY+ Fo(h; N) = £,(h; N)
< LN = UV D)1+ LTt NY = Tt N3 1)) (39)
Using Bogoljubov’s inequality and the familiar formula for f°(N; 1), one

has
SUN) = f3(N;7)

< Vn_1 Z van(v)<a;kav>(1v;r)

veB

= 2 (9 3/0r,)(N; T)

ve B

=Vt Y 1@, (v}t et — 1yt

veB

(ﬂVn)_l Z ’Ev(l—-f‘,)_l (310)

veB

I

N

Also using Bogoljubov’s inequality and —11<S5*<11, one finds
Ti(h; NY = Fi(hs N 1)
SV Y [(TCI—I)wn(V)_l

ve®

x Re Z AnlJ5 V) Aulks V)<S?j)5(xk)>(h;1v;r)]

k=1

<@ T a-n)wem | G| G

veld
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Inserting (3.10) and (3.11) into (3.9), one obtains
LfUN)+ T5(hs N)] = fu(h; N)
< (BVn)_l Z ‘rv(ln_'ﬂr:v)k1

velB
+2V)TEY (—1,) 17w,y LZ 1205 v } (3.12)
veB
The infimum of the right-hand side of (3.12) with respect to t is assumed at

B0, (v) 230, |14, V)]

ST e, X, V) G139
which lies in (0, 1) by virtue of the definition of B. Thus,
SUAN)+ T3l N)— f(hs N)
VBV, ‘E w,(v) Z |2n(J5 V)1 (3.14)
vzl j=1

For fixed n, it follows that fO(N), 7(k; N), and £, (k; N) converge to 19,
75(h), and f,(h) respectively, as N — oo, so that the following result is
proved.

Lemma 2B:

for Ty =L <SVIHBY,) 2 Y 0,007 3 14,35 )]
vzl j=1
The limit of 7(%) has been recently obtained by Duffield and Pulé® in
their analysis of the BCS model. Their result, which combines large-
deviation methods with Berezin—Lieb bounds, is the following.

Theorem 2 (Duffield and Pulé). If conditions (C1) and (C2) are
satisfied and there exists a real-valued continuous function 4 on [0, 1] such
that

(C0) lim sup |h;—h(j/n)| =

"o 0 e (12,.,n)
then
Fi(hy= lim  73(h)
p = const

—p  inf (f{ — B U(r (1)) + Lh(t) s(1)

rse L2([0.11)
Isl<sr<i

—Lle(n)| [r(2)* —s(£)*]"?} dr
pf J (¢, 1) s(t)s(t)dtdt)
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Remark 1. The proofs of ref. 6 apply without change under the
slightly stronger assumptions h;=h(j/n), &,(j}=¢(j/n), and 4,(j, k)=
A(j/n, k/n), but can be adapted to accommodate (C0)-(C2).

The inf, _ g« £5(h; x) is discussed in Appendix A; one has the following
result:

Lemma 3. Under the assumptions (C0)-(C2),
lim inf f5(h; x)=F%(h)

n—-o xeR”
p =const

Proof. Let M,=inf, g f5(h;x); by LemmaAl, setting s;=
r;sin(9;),

M,= inf (Vn‘l i (=B H(r) =% e )] (77 —s7)'* + Lh;s,]

EIEGES i—1
n

SR

j=1k=1
Define L, by replacing ¢,(j), #;, and 4,(j, k) in the above expression for
M, by e(j/n), h(j/n), and A(j/n, k/n), respectively, where &(-), A(-), and
A(-, -) are the functions given by conditions (C0)—(C2). As in Theorem 3 of
ref. 6, one proves that L, — f5(h) as n — co with p = const. Now,

M,—LJ< sup V'Y (el -l — )
j=1

Isii<r<1
+ 3Lk —h(jin)] 5}

n

S S (LA K — 4,0, 6] 55}

j=1ik=1

<hon=' S (e~ le, ()l + by~ b}

12 S A, k) — A, K|

j=1k=1
so that, by (C0)-(C2), M,— L, —0 as n— oo with p=const. 1|
Remark 2. One can prove
lim [3(h)—inf f5(k; x)]=0

directly by the “approximating Hamiltonian method,” using an idea of
ref. 1; one has to assume that »~! (number of nonzero eigenvalues of
A,)— 0 as n— oo; moreover, the positivity of 4, is used.!'?
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The proof of Theorem 1 is obtained by combining Lemmas 2A, 2B,
and 3 and Theorem 2.

One can recover the results of ref 10, which are valid for the
homogeneous case: ¢,(j)=¢,, 4,(j;v)=4,(v), and h,=h, for all
j=1,2,.,n° Condition (CO) is trivially met; conditions (C1) and (C2)
demand the existence of real numbers ¢ and A (=0) such that ¢, — ¢ and
s b;lin>L2(¢z¢n) -4

Lemma 4. In the homogeneous case

i hy=—p sup [B~'Tu)+4 Al u(l—2")" +1 el uz + jpAu’(1—2%)]

O<z,u<!
Proof. By Theorem 2, choosing r(t)=r and s(z)=s a.e., one has

T ()= sup [BU(r)—ths+lel (P — 522 +1pds?]

Isi<r<t

= sup [B~'I(r)+1i|h|rx

O<xr<t

+ 41l r(1=x2)"2 + 4pArx’ ]
For r and s in LZ([0, 1]) with |s| <r<1 (all integrals are over [0, 1]),
[ 002 = 5021 ar
= [ [H0) = 5() 1 [r(0) + s(0)] " di

1/2
< {j [r(6) = s(0)] dr - | [r(e) +5(0)] dt}

{[ia] -[jeoa}”

by the Schwarz inequality; since 7 is concave,

—75(h)/p<  sup (5*‘1 <J r(t) dz>
r,sisll_;{([o,ll])

1 fs(z)dz+%p/1 U s(1) dt}z

o {[ [0 d,]z—[ [ s dr}})

= sup [BU(r)=1ths+1le) (P =57+ 1pAs?] B

Isl<r<1

* Condition (C4) is not needed for the results of ref. 10.
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4. THE PHASE TRANSITION
The variational problem determining 7°(k), and thus f(4), is

1
s= s ([ (g0t
rse Lg([0,11) \70
Isi<r<1

+31e(@)] [r()* —s(1)*]"?

1 1
—Lh(t) s(r)} dr+1p L L A, 1) s(2) s(t') dt dz’) (4.1)
For A(t, t')=0 (and h=const) this problem* is solved by Duffield and
Pule'®; most of their arguments apply to the case of arbitrary A.
Notice that if #=0 and (r,s) is a maximizer for (4.1), then so is
{r, —s). The function I is concave, with derivative —arctanh. The
r variation can be done as in ref 6; for se LE([0,1]) with [s| <1, let
r,: [0, 1] — R be defined (a.e.) to be 1 where |s| =1, and otherwise as the
largest zero in the interval [|s(z)|, 1] of the function®

x =3B 1e(1)] x — [x* — s(1)*]"? arctanh(x) (4.2)
Then, if # denotes the unit ball of LZ([0, 1]), one has
F(h)=sup {¥(s; h)} (4.3)

se#

where
Visit)=[ (B0 0)+ H1el0)] [r(ey —s(07]

—%Mﬂmm+@ﬁﬁAMHWMUMMﬂ (4.4)

For h=0, one has inversion symmetry, ¥"(s; 0)=¥"(—s;0). Let X be the
self-adjoint, integral operator on LZ([0, 1]) defined by the kernel 4; X is
compact. Consider the continuous function gz on [0, 1] given by

(B2)'7, if &(r)=0

gﬂ(t)z{ s . 4.5)
({tanh[$B [e(1)| 1}/Ie()))" if &(r)#0

4 The kernel need not be positive; it defines a positive operator. A(¢, t')>0 is used in the
uniqueness results of ref. 6.

5 Notice that ro(f)=tanh[i8 |e(f)|] ae, that r_,=r,, and that r,=|s| on the set where
e(t)=0.
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and let G be the (bounded, positive) operator on Li([0,1]) of multi-
plication by g;. Let U= pG,KGy, ie.,
1
{Uﬁl//}(l)=pgﬁ(t)f0 gplt') A(e, 1)y (1') dr’ (4.6)
Define @4(s; t) (a.e.) by
2B~ " arctanh s(t) g(1)=0
le(1)] s(0)/[r()> —s(1)*17% (1) #0

and notice that @4(—s;-)= —P4(s; - ).

The solution of (4.1) for A=0 is obtained from the following two
results, which will be proved in Appendix B by adjusting the arguments of
ref. 6:

Theorem 3. If [[U4] <1, then

Dh(s; 1) = p{Ks}(1) —{ (4.7)

1
F0)=7(0;0)=p"1 j log{2 cosh[4Be(1)1} dt
0
Theorem 4. If |[Uj[ >1, then there exists a nonzero S« €% such

that #(0)=7"(s,; 0)=7"(—5,;0), where s, and —s, are solutions of the
Euler-Lagrange equation @4(s; -) = 0. Moreover,

F(0)=7"(£54:0)

=p"! jl log(2 cosh {38[e(1)* + ky(1)*172}) dt

ky(2)* dr

i tanh{4BLe(1)> + k4(1)°]"?)
4o Ce(r)* + ky(1)° 12
where kj, # 0 satisfies
tanh {$8[e(r')” + kg(r')?1"?}
(ot + g1 17

1
kg(t)y=p J At 1) kp(t') dr’
0

Remark 3. Most likely, s, and —s, are the only nonzero solutions
of the Euler-Lagrange equation if K is positive, but I am unable to prove
this.

The map g — || Uj| is strictly increasing with limg o | U4 =0, so that
one can identify a possibly infinite critical reciprocal temperature f, such
that if f < f,, then |Ugll <1, and if f> B, then [U%|| > 1. For B<B., [
(and thus f) is independent of the interaction: the system is thermo-
dynamically equivalent to a noninteracting system of bosons and spins.
Qualitatively, the results are identical to those of refs. 9 and 10.
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As an illustration, in the homogeneous case, one has

1B if ¢=0

Pl =
15 pA{tanh(%ﬂ|a|)/|s| if £#£0

and thus, as in ref. 10,

2 arctanh(|e|/pA)/|¢| if e#0and gl <pa
B.= 4§ +x if e#0and |e] =pa
2/pA if ¢=0

Finally, one can proceed, as in ref. 6, to obtain the thermodynamic
limit of the equilibrium expectation of the average spin polarization in
x direction when A(¢) =4 (by symmetry, this limit is zero for #=0), and
then consider the limit # — 0. The result is qualitatively the same as that for
the homogeneous case,*® namely: the limit is zero for < g, and not zero
if B> ., with different sign depending on whether 410 or 4| 0.

APPENDIX A. DISCUSSION OF inf, . f3(h; x)
Lemma A1. Let / on [0, 1] be defined as in Theorem 1. Then,

inf f5(h; x)

xeR"

= inf {V;l > [—ﬁ“[(rj)—k%sn(j) r;cos($;)
rje [0,1 S
e [[0,273] J=1

+3hr;sin(9,) =4V, Y
k

=1

A, (J, k) riri sin(;) sin(&k}}

=it v S| =ae)—4a ) cos3)
rie [0,1 P
9e - 1[/2n,]1/2n] /=1

+ 3 sin(9) — 2Vt Y A, k) e sin($) sin(Sk):l}
k=1

Proof. One verifies that for a and b real,

inf [—B '(r)+iarz+ibry]
re[0,1
y2+[22=]1

= —p~'log{2 cosh[1B(a*+ b?)*]}
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Thus, by Lemma 1,

Tl x)=v;t o ) {_ﬁ"l(rf)+%6n(j) 72

+31, |:hj“2 Y A, k) Xk}} +xA4,x
K

=1

The variation over x € R” can be done explicitly (for this, it is convenient to
diagonalize A4,,); it follows that

inf 73(h; x)
xe R

=Vt inf Y L =BT+ 38,0)) 1z
nefoll /7 4
zf-&—y,z:l

iy =5Vt Y ey AL k):‘

k=1

which proves the first claim upon setting z;=cos(9,), ;€ [0,2n]. The
second claim is obvious. |

APPENDIX B. SOLUTION OF THE VARIATIONAL PROBLEM
FOLLOWING DUFFIELD AND PULE®

Write .# for #(0) and ¥7(s) for 7 (s; 0).

Proof of Theorem 3. This is a minor adjustment of the
corresponding result of ref 6, to accommodate the fact that the present
variation is over # and not its positive part. Let 4 be the support of ¢. For
arbitrary se # and 0< p<1, put F(p)=*"(ps). Now, F is differentiable
with derivative (integrals with unspecified domain are over [0, 1])

F'(p)=14pp [[ A(t, ) (1) str) dt ar
—4p [ 1601 s()? [y 1) = pPs(0)?] 2 d

—ﬁ-lf arctanh[ p s(2)|] Is(2)] dt
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Using the inequalities
Is(¢)] arctanh[p |s(£)|1> ps(1)®
[r1)? —s(2)’1"* < tanh[3B |e(1)[]
one obtains
F'(p)<3p<8 {UG=1} 8 20

where §(¢) = s(¢)/g4(¢). The assumption || U4 <1 implies F'(p)<0, so that
v (ps)< ¥ (0), and by continuity ¥ (s)<¥7(0). One can compute 7 (0)
using ro(7) = tanh[ 3B |e(1) 1. 1

The proof of Theorem 4 is broken up into a series of lemmas all of
which have their origins in ref. 6.

Lemma B1. There exists s€ % such that #(h)=7(s; h).
Proof. See Theorem 5 of ref. 6. |}
Lemma B2. If |Uj| > 1, then 4 >7¥7(0).

Proof. Let se# with ¥'(s)=.. Since U4 is compact, |U%| is an
eigenvalue; let £ be a corresponding eigenvector. Define £, e LZ ([0, 1]) by

O

0 otherwise
a.e. It follows that

<§n’{UZ_I}én>Lé([0,l])_’“U§I|—1(>O!) as n—-ow

Choose m such that

s LU= 1} &) 120047 > 0

and let §=¢,, g5. The proof then proceeds as in Lemma 3 of ref. 6. |}
Lemma B3. If se# and 4 =77(s), then {re[0,1]:|s(z)| =1} has
Zero measure.

Proof. Proceed as in the proof of Lemma 2 of ref 6, with the set
{re[0,1]:[s() =1} 1
Lemma B4. If se # and 4 = ¥7(s), then ®f(s;-)=0.

Proof. This is an adaptation of the proof of Theorem 6 of ref. 6. Let
0<d<1, and take e LX([0,1]) with essential support contained in
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As={1e[0,1]:]s(r)] {1—0}. For |p| sufficiently small, s, =s(1 + p&) lies
in #. Let F(1)=¥"(s,). Taking the derivative at p=0, one obtains

%L (1) s(r) @h(s; 1) dt =0 (*)

I

Now take {=s®4(s;-) on 4; and =0 on A§; (*) implies that s@(s;-)=0
on A;. Since J was arbitrary, Lemma B3 implies that s®4(s; -) =0. Thus,
@4(s; ) =0 on B, the essential support of s; but by the definition of ®4(s; -),
®4(s;-)=0o0n B°. |

The first part of Theorem 4 follows from Lemmas B2-B4; the rest of
the claim follows as in ref. 6.
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